Shallot (Allium cepa L.) Peel Infusion Ameliorates Kidney Histopathological Damages in Diazinon-Induced Wistar Rats

Avie Baldana Bi’izzyk, Dina Helianti, Septa Surya Wahyudi, Rosita Dewi

Abstract


Diazinon, an organophosphate pesticide, is used extensively in agricultural sector. Consumption of agricultural products containing diazinon residue may lead to harmful health consequences. Among these is nephrotoxicity, which includes lipid peroxidation, that can damage the kidney. Flavonoids in shallot peel can scavenge free radicals, inhibit necrosis, and activate bone marrow-derived cells for cell regeneration. This study aimed to determine the correlation between shallot peel infusion (SPI) dose and kidney damage amelioration to establish the maximum effective dose of SPI to ameliorate kidney histopathological damage in diazinon-induced rats. This study was performed at the Pharmacology Laboratory, Faculty of Medicine, University of Jember, Indonesia, in April 2021, on 35 rats that were divided into 7 groups—normal, diazinon, and five treatment groups. Diazinon 40 mg/kgBW was administered on day 1-7, while SPI 125, 250, 500, 1,000, 2,000 mg/kgBW were administered on day 8–14 according to the treatment group. Kidney histopathological slides with hematoxylin-eosin (H.E.) staining were assessed using Kocoglu scoring and Kidney damage scores of the treatment groups were analyzed using Pearson test. The maximum effective dose was determined using regression test. The damages found in diazinon-induced rats were tubular degeneration, necrosis, and inflammation with a higher damage score than normal rats (p<0.05). Pearson test showed moderate correlation (coefficient -0.594). Higher SPI doses presented lower kidney damage scores, with 1,359 mg/kgBW being the maximum effective dose. SPI dose and the kidney damage amelioration are moderately correlated with a SPI maximum effective dose to ameliorate kidney damage in diazinon-induced rats of 1,359 mg/kgBW.


Keywords


Flavonoid, kidney, oxidative stress, pesticide, red onion

Full Text:

PDF

References


  1. Wang D, Singhasemanon N, Goh KS. A Review of diazinon use, contamination in surface waters, and regulatory actions in california across water years 1992–2014. Environ Monit Assess. 2017;189(7):310. doi:10.1007/s10661-017-6026-z
  2. Ardiwinata AN, Ginoga LN, Sulaeman E, Harsanti ES. pesticide residue monitoring on agriculture in Indonesia. Jurnal Sumberdaya Lahan. 2018;12(2):133–44.
  3. Al-Attar AM, Elnaggar MHR, Almalki EA. Protective effect of some plant oils on diazinon induced hepatorenal toxicity in male rats. Saudi J Biol Sci. 2017;24(6):1162–71. doi:https://doi.org/10.1016/j.sjbs.2016.10.013
  4. Cakici O, Akat E. Effects of oral exposure to diazinon on mice liver and kidney tissues: biometric analyses of histopathologic changes. Anal Quant Cytopathol Histopahtol. 2013;35(1):7–16.
  5. Wisudanti DD, Herdiana F, Qodar TS. diazinon toxicity to kidney and liver of wistar male rats in terms of biochemical and histopathological parameters. J Agromedicine Med Sci. 2019;5(2):112–7. doi:10.19184/ams.v5i2.11575
  6. Pearson JN, Patel M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci. 2016;1378(1):17–24. doi:https://doi.org/10.1111/nyas.13115
  7. Bhandari SR, Yoon MK, Kwak JH. Contents of phytochemical constituents and antioxidant activity of 19 garlic (Allium sativum L.) Parental Lines Cultivars. Hortic Environ Biotechnol. 2014;55(2):138–47. doi:https://doi.org/10.1007/s13580-014-0155-x
  8. Shi GQ, Yang J, Liu J, Liu SN, Song HX, Zhao WE, et al. Isolation of flavonoids from onion skin and their effects on K562 cell viability. Bangladesh J Pharmacol. 2016;11:18–25. doi:https://doi.org/10.3329/bjp.v11iS1.26419
  9. Mardiah N, Mulyanto C, Amelia A, Lisnawati L, Anggraeni D, Rahmawanty D. Penentuan aktivitas antioksidan dari ekstrak kulit bawang merah dengan metode DPPH. Jurnal Pharmascience. 2017;4(2):147–54. doi:10.20527/jps.v4i2.5768
  10. Viera VB, Piovesan N, Rodrigues JB, Mello R de O, Prestes RC, dos Santos RCV, et al. Extraction of phenolic compounds and evaluation of the antioxidant and antimicrobial capacity of red onion skin (Allium cepa L.). Int Food Res J. 2017;24(3):990.
  11. Rahima SA, Dewi R, Rusmatika NS, Helianti D. Shallot (Allium cepa L.) skin ethanol extract neutralizes liver oxidative stress in diazinon-induced wistar rats. Qanun Medika. 2022;6(1):49–58.
  12. Pang XG, Cong Y, Bao NR, Li YG, Zhao JN. Quercetin Stimulates Bone Marrow Mesenchymal Stem Cell Differentiation through an Estrogen Receptor-Mediated Pathway. Biomed Researcch International. 2018;2018:1–11. doi:https://doi.org/10.1155/2018/4178021
  13. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:1–16. doi:https://doi.org/10.1155/2013/162750
  14. Universitas Indonesia. Acuan Sediaan Herbal, 2010. Indonesia: Katalog Perpustakaan Terpadu Poltekkes Kemenkes Jakarta II; 2010.
  15. Kocoglu H, Ozturk H, Ozturk H, Yilmaz F, Gulcu N. Effect of dexmedetomidine on ischemia-reperfusion injury in rat kidney: a histopathologic study. Renal Failure. Ren Fail. 2009;31(1):70–4. doi:https://doi.org/10.1080/08860220802546487
  16. Bleier L, Wittig I, Heide H, Steger M, Brandt U, Dröse S. generator-specific targets of mitochondrial reactive oxygen species. Free Radic Biol Med. 2015;78:1–10. doi:https://doi.org/10.1016/j.freeradbiomed.2014.10.511
  17. Miranda CA, Guimarães AR de JS, Bizerra PFV, Mingatto FE. diazinon impairs bioenergetics and induces membrane permeability transition on mitochondria isolated from rat liver. J Toxicol Environ Heal-Part A Curr Issues. 2020;83(17-18):616–29. doi:https://doi.org/10.1080/15287394.2020.1805078
  18. Kumar V, Abbas AK, Aster JC. Robbins Basic Pathology. 9th ed. Chicago: Elsevier Inc.; 2013.
  19. Restuati M, Panggabean E. Pengaruh pemberian ekstrak etanol daun sisrak (annona muricata l.) terhadap gambaran histopatologi organ ginjal dan hati tikus putih (rattus norvegicus l.) dengan pemberian SRBC sebagai antigen. Seminar Nasional Biologi dan Pembelajarannya; 2014 Aug 23; Medan, Indonesia.
  20. Sari WN, Saebani, Dhanardhono T. Pengaruh pemberian butylated hydroxytoluene (2,6-di-tert-butyl-4-methylphenol) per oral dosis bertingkat terhadap gambaran histopatologis hepar tikus wistar. Diponegoro Med J (Jurnal Kedokt Diponegoro). 2018;7(2):1154–65.
  21. Tandi J, Wulandari A, Asrifa. Efek ekstrak etanol daun gendola merah (Basella alba L.) terhadap kadar kreatinin, ureum dan deskripsi histologis tubulus ginjal tikus putih jantan (rattus norvegicus) diabetes yang diinduksi streptozotocin. J Farmasi Galenika. 2017;3(2):93–102. doi:https://doi.org/10.22487/j24428744.0.v0.i0.8813
  22. Vásquez-Espinal A, Yañez O, Osorio2 E, Areche C, García-Beltrán O, Ruiz LM, et al. Theoretical study of the antioxidant activity of quercetin oxidation products. Front Chem. 2019;7(818):1–10. doi:https://doi.org/10.3389/fchem.2019.00818
  23. Xu D, Hu MJ, Wang YQ, Cui YL. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019;24(6):1123. doi:10.3390/molecules24061123
  24. Mateus PG, Wolf VG, Borges MS, Ximenes VF. Quercetin: prooxidant effect and apoptosis in cancer. Studies in Natural Products Chemistry. 2018;58:265–88.
  25. Dibal NI, Hyedima Garba S, Watson Jacks T. acute toxicity of quercetin from onion skin in mice. Pharmaceutical Biomed Res. 2021;6(4):269–76. doi:10.18502/pbr.v6i4.5113




DOI: https://doi.org/10.15395/mkb.v56.3307

Article Metrics

Abstract view : 350 times
PDF - 174 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


 


Creative Commons License
MKB is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

 


View My Stats