Aplikasi Krioprotektan Ekstraseluler Tunggal Secara Efektif Mempertahankan Kualitas Sperma Manusia Pascavitrifikasi
Abstract
Pemilihan jenis krioprotektan merupakan salah satu kunci keberhasilan dalam mempertahankan motilitas dan viabilitas sperma pascavitrifikasi. Secara konvensional, vitrifikasi menggunakan konsentrasi krioprotektan dan laju kecepatan pembekuan yang tinggi untuk menghindari pembentukan kristal es intra dan ekstraseluler yang menyebabkan kerusakan dan kematian pada sel. Berdasar atas kemampuan menembus membran sel, krioprotektan dibedakan menjadi krioprotektan ekstra dan intraseluler. Sperma manusia memiliki struktur morfologi yang sangat padat dan sedikit mengandung sitoplasma sehingga perpindahan cairan selama proses vitrifkasi sangat kecil. Selain itu, sperma manusia juga mengandung beberapa jenis protein yang dapat berfungsi sebagai krioprotektan intraseluler. Berdasar atas kondisi tersebut, penggunaan krioprotektan pada vitrifkasi sperma manusia memerlukan studi lebih lanjut. Penelitian ini dilakukan di Laboratorium Sentral Universitas Padjadjaran dan dilaksanakan pada bulan Desember 2017–Januari 2018.Penelitian ini bertujuan mengetahui motilitas dan viabilitas sperma pascavitrifikasi dengan menggunakan tipe krioprotektan yang berbeda dan kombinasi keduanya. Earle’s balanced salt solution digunakan sebagai krioprotekan ekstraseluler, sementara EG 0,57% sebagai krioprotektan intraseluler. Sampel yang telah ditambahkan medium vitrifikasi diequilibrasi selama 10 menit, kemudian dikemas di dalam straw 0,25 mL dan langsung dipaparkan ke dalam nitrogen cair. Evaluasi dilakukan dengan melakukan thawing setelah 24 jam penyimpanan. Hasil menunjukkan bahwa motilitas dan viabilitas sperma tertinggi pada kelompok yang menggunakan media vitrifikasi krioprotektan ekstraseluler, walaupun secara statistik tidak berbeda nyata dengan kelompok lainnya (34%; 50%; p<0,05). Sebagai simpulan, krioprotektan ekstraseluler merupakan media vitrifikasi terbaik untuk menjaga motilitas dan viabilitas sperma pascavitrifikasi
Kata kunci: Krioprotektan, sperma manusia, vitrifikasi
Single Extracellular Cryoprotectant Application Effectively Maintain Post-Vitrification Human Sperm Quality
Selection of cryoprotectant is one of the keys to maintain sperm motility and viability after vitrification. Conventionally, vitrification uses cryoprotectants with high concentration and cooling rate to avoid the formation of intra- and extra-cellular ice crystals that can induce cell damage and cell death. Morphology structure of human sperm is very dense and contain less cytoplasm compartment; therefore mobilization of fluid is minimum during vitrification. In addition, human sperm also contains several types of protein that function as intracellular cryoprotectants. Based on this condition, the use of cryoprotectants in human sperm vitrification needs a further study. This study was conducted at the Central Laboratory of Universitas Padjadjaran in December 2017–January 2018. The aim was to determine the motility and viability of post-vitrification sperm by using different types of cryoprotectants. Samples that had been mixed with vitrification medium were equilibrated for 10 minutes, packed in a 0.25 mL straw, and directly exposed to liquid nitrogen. The evaluation was conducted by thawing after 24 hours of storage. The results showed that the highest sperm motility and viability was found in the group that used extracellular cryoprotectant vitrification media although it was not statistically different ( 34%; 50%, p <0.05) In conclusion, extracellular cryoprotectants are the best vitrification medium for maintaining motility and viability of post-vitrification sperm.
Key words: Cryoprotectant, sperm, vitrification
Keywords
Full Text:
PDFReferences
Mocé E, Fajardo AJ, Graham JK. Human sperm cryopreservation. Eur. Med. J. 2016;1(1):86–9.
Di Santo M, Tarozzi N, Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on dna integrity, and implications for ART. Adv Urol. 2012;2012:1–4.
Kolibianakis EM, Venetis CA, Tarlatzis BC. Cryopreservation of human embryos by vitrification or slow freezing: which one is better?. Curr Opin Obstet Gynecol. 2009;21(3):270–4.
Curaba M, Verleysen M, Amorim CA, Dolmans MM, Van Langendonckt A, Hovatta O, dkk. Cryopreservation of prepubertal mouse testicular tissue by vitrification. Fertil Steril. 2011;95(4):1229–34.
Aye M, Di Giorgio C, De Mo M, Botta A, Perrin J, Courbiere B. Assessment of the genotoxicity of three cryoprotectants used for human oocyte vitrification: dimethyl sulfoxide, ethylene glycol and propylene glycol. Food Chem Toxicol . 2010;48(7):1905-12.
Saki G, Rahim F, Zergani MJ. Vitrification of small volume of normal human sperms: use of open pulled straw carrier. J Med Sci. 2009;9(1):30–5.
Motta JP, Paraguassu-Braga FH, Bouzas LF, Porto LC. Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood. Cryobiology. 2014;68(3):343–8.
Isachenko E, Isachenko V, Weiss JM, Kreienberg R, Katkov II, Schulz M, dkk. Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose. Reproduction. 2008;136(2):167–73.
Widyastuti R, Sumarsono SH, Boediono A, Rasad SD. Low concentration of ethylene glycol improve the recovery rate of human spermatozoa after vitrification. Jurnal Veteriner. 2016;17(3):1–7.
Isachenko V, Montag M, Isachenko E, Nawroth F, Dessole S, van der Ven H. Developmental rate and ultrastructure of vitrified human pronuclear oocytes after step-wise versus direct rehydration. Hum Reprod. 2004;19(3):660–5.
Widyastuti R, Lesmana R, Boediono A, Sumarsono SH. Effect of cryoprotectants on sperm vitrification. Dalam Advances in Biomolecular Medicine: Proceedings of the 4th BIBMC (Bandung International Biomolecular Medicine Conference) 2016 and the 2nd ACMM (ASEAN Congress on Medical Biotechnology and Molecular Biosciences), October 4-6, 2016, Bandung, West Java, Indonesia. CRC Press; 2017
World Health Organisation. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. Cambridge university press; 1999.
Vajta G, Kuwayama M. Improving cryopreservation systems. Theriogenology. 2006;65(1):236–44.
Boitrelle F, Albert M, Theillac C, Ferfouri F, Bergere M, Franc, dkk. Cryopreservation of human spermatozoa decreases the number of motile normal spermatozoa, induces nuclear vacualization and chromatin decondensation. J Andrology. 2012;33(6):1371–78.
Ribas-Maynou J, Fernandez-Encinas A, Garcia-Peiro A, Prada E, Abad C, Amengual MJ. Human semen cryopreservation: a sperm DNA fragmentation study with alkaline and neutral Comet assay. Andrology. 2014;2:83–7.
Petyim S, Neungton C, Thanaboonyawat I, Laokirkkiat P, Choavaratana R. Sperm preparation before freezing improves sperm motility and reduces apoptosis in post-freezing-thawing sperm compared with post-thawing sperm preparation. J Assist Reprod Genet. 2014;(12):1673–80.
Vanderzwalmen P, Connan D, Grobet L, Wirleitner B, Remy B, Vanderzwalmen S, dkk. Lower intracellular concentration of cryoprotectants after vitrification than after slow freezing despite exposure to higher concentration of cryoprotectant solutions. Hum Reprod. 2013;28(8):2101-10.
Shamsi MB, Kumar R, Dada R. Evaluation of nuclear DNA damage in human spermatozoa in men opting for assisted reproduction. Indian J Med Res. 2008;127(2):115–23.
BP Best. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 2015;18(5):422–36.
Hreinsson J. Vitrification in assisted reproduction. A users manual and trouble-shooting guide. Acta Obstet Gynecol Scand. 2009;88(3):367–8.
DOI: https://doi.org/10.15395/mkb.v50n4.1319
Article Metrics
Abstract view : 2309 timesPDF - 1732 times
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
MKB is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
View My Stats