Ligasi dan Transformasi Gen MSP1 Plasmodium falciparum Penyebab Malaria di Kota Jayapura
Abstract
MSP1 merupakan protein yang antigenik dan paling banyak diekpresikan pada permukaan merozoit ketika menginfeksi eritrosit pasien malaria sehingga banyak dikembangkan untuk desain terapi vaksin. Proses ligasi dan transformasi gen MSP1 merupakan upaya penggandaan gen untuk menghasilkan produk yang sama ketika diekspresikan. Penelitian ini bertujuan mengkloning gen MSP1 P. falciparum dari pasien malaria tropika di Jayapura menggunakan vektor pJET1.2/blunt dan sel kompeten E. coli DH5 sehingga didapatkan perbanyakan plasmid rekombinan yang mengandung gen MSP1. Darah yang positif mengandung P. falciparum diproses secara molekuler, diawali tahapan isolasi DNA genom, amplifikasi dengan teknik PCR, ligasi ke dalam vektor pJET1.2/blunt dan ditransformasi pada E. coli DH5α dengan metode Heat Shock Transformation, diakhiri dengan konfirmasi PCR untuk memastikan tersisipkannya gen blok 2 MSP1. Hasil penelitian menunjukkan bahwa konfirmasi keberadaan gen MSP1 dalam pJET1.2/blunt dengan PCR berhasil dilakukan. Dari total 10 koloni positif yang ditumbuhkan dalam kultur cair, kemudian diiisolasi plasmid dan dikonfirmasi dengan PCR diperoleh pita hasil elektroferogram dengan ukuran sekitar 1049 bp yang menunjukan gen MSP1 dalam plasmid. Berdasar atas hasil tersebut, kloning gen MSP1 menggunakan vektor kloning pJET1.2/blunt dan sel kompeten E. coli DH5a telah berhasil dilakukan.
Kata kunci: Heat Shock, ligasi, MSP1, P. falciparum, transformasi
Malaria-causing MSP-1 Plasmodium falciparum Ligation and Transformation in Jayapura City
MSP1 is the most antigenic and expressed protein on merozoite surface when it infects the erythrocytes of malaria patients which leads to its use for vaccine therapy design development. The ligation and transformation process of the MSP1 gene is a gene duplication attempt for producing the same product during expression. This study aimed to clone P. falciparum MSP-1 gene from tropical malaria patients in Jayapura using pJET1.2/blunt vectors and E. coli DH5a competent cells, to get the recombinant plasmid propagation of MSP1 gene. Blood that was positive for P. falciparum was molecularly processed, starting with genomic DNA isolation and then followed by PCR amplification, ligation into pJET1.2/blunt vector, and transformation into E. coli DH5α using the heat shock transformation method. The process was ended with PCR confirmation to confirm MSP1 gene insertion. The results showed that the presence of the MSP1 gene in pJET1.2/blunt was successfully confirmed through PCR. From a total of 10 positive colonies grown in liquid culture, plasmid was isolated. Electropherogram result presented bands of about 1049bp, indicating the presence of the MSP1 gene in plasmid. Hence, MSP1 gene cloning using pJET1.2/blunt cloning vector and competent cell E. coli DH5α has been successfully performed.
Key words: Heat shock, ligation, MSP-1, P. falciparum, transformation
Keywords
Full Text:
PDFReferences
WHO. World Malaria Report. World Health Organization. Malaria eradication on the agenda at the 141st WHO Executive Board meeting; 2014.
Irawati N. Genetic Polymorphism of merozoite surface protein-1 (MSP1) block2 allelic types in plasmodium falciparum field isolates from mountain and coastal area in West Sumatera. Med J Indones. 2011; 20(1):11–4.
De Groot GA, During HJ, Maas JW, Schneider H, Vogel JC, Erkens RHJ. Use of rbcL and trnL-F as a two-locus DNA barcode for identification of NW-European ferns: an ecological perspective. PloS ONE. 2011;20(6):1–10.
Bharti PK, Shukla MM, Sharma YD, Singh N. Genetic diversity in the block 2 region of the merozoite surface protein-1 of Plasmodium falciparum in central India. Malar J. 2012; 11(1):1–7.
Sumari D, Hosea KM, Mugasa JP, Abdulla S. Genetic diversity of Plasmodium falciparum strains in children under five years of age in Southeastern Tanzania. Open Tropic Med J. 2010;3(5):10–4.
Kiwanuka GN. Genetic diversity in Plasmodium falciparum merozoite surface protein 1 and 2 coding genes and its implications in malaria epidemiology: a review of published studies from 1997–2007. J Vector Borne Dis. 2009;46(1):1–12.
Cowman AF, Berry D, Baum J. The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol. 2012;198(6):961–71.
Schoepflin S, Valsangiacomo F, Lin E, Kiniboro B, Mueller I, Felger I. Comparison of Plasmodium falciparum allelic frequency distribution in different endemic settings by high-resolution genotyping. Malar J. 2009;8(1):1–8.
Osier FH, Murungi LM, Fegan G, Tuju J, Tetteh KK, Bull PC, dkk. Allele-specific antibodies to Plasmodium falciparum merozoite surface protein-2 and protection against clinical malaria. Parasite Immunol. 2010;32(3):193–201.
Tu Z, He G, Li KX, Chen MJ, Chang J, Chen L, dkk. An improved system for competent cell preparation and high efficiency plasmid transformation using different escherichia coli strains. Electronic J Biotechnol. 2005; 8(1):113–20.
Ghanchi NK, Martensson A, Ursing J, Jafri S, Bereczky S, Hussain R, dkk. Genetic diversity among Plasmodium falciparum field isolates in Pakistan measured with PCR genotyping of the merozoite surface protein 1 and 2. Malar J. 2010;9(1):1–6.
Poh JJ, Gan SKE. The determination of factors involved in column based nucleic acid extraction and purification. J Bioproces Biotechniq. 2014;4(3):1–6.
Zhang H, Zhang Z, Li J, Cai S. Effects of Mg2+ on supported bilayer membrane on a glassy carbon electrode during membrane formation. Int J Electrochem Sci. 2007;2(2007):788–96.
Heidari A, Keshavarz H, Rokni MB, Jelinek T. Genetic diversity in merozoite surface protein (MSP)-1 and MSP-2 genes of Plasmodium falciparum in a major endemic region of Iran. Korean J Parasitol. 2007;45(1):59–63.
Zakeri S, Mehrizi AA, Zoghi S, Djadid ND. Non-variant specific antibody responsses to the C-terminal region of merozoite surface protein-1 of plasmodium falciparum (Pf MSP119) in Iranians exposed to unstable malaria transmission. Malar J. 2010;9(1):1–8.
Sutton PL, Clark EH, Silva C, Branch OH. The Plasmodium falciparum merozoite surface protein 1 19 kd antibody responsse in the Peruvian Amazon predominantly targets the non-allele specific, shared sites of this antigen. Malar J. 2010;9(1):1–13.
DOI: https://doi.org/10.15395/mkb.v49n4.1138
Article Metrics
Abstract view : 2928 timesPDF - 1593 times
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
MKB is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
View My Stats