Effects of Yacon Leaf Extract on MCP-1 and IL-10 Expressions and Macrophage Phenotypes in CKD Mouse Model

Meida Sofyana, Widya Wasityastuti, Nuni Ihsana, Setyo Purwono, Nur Arfian

Abstract


Macrophages are essential in tissue homeostasis and immunity, but also contribute to disease development and progression. Chronic kidney disease (CKD) is characterized by interstitial infiltration of macrophages, the density of which correlates inversely with kidney survival. Studies have shown that yacon (Smallanthus sonchifolius) has beneficial effects on CKD. Therefore, this study aimed to investigate the effects of yacon leaf extract on mice with subtotal nephrectomy by evaluating the M1 and M2 macrophage counts and mRNA expressions of monocyte chemoattractant protein-1 (MCP-1 and IL-10. The mice were randomly divided into five groups: SO (negative control: underwent sham operation), SN (positive control: underwent subtotal nephrectomy), and yacon-treated groups: YK1, YK2, and YK3 (underwent subtotal nephrectomy, given peroral yacon leaf extract for 14 days with doses of 24,5 mg/kgBW/day, 49 mg/kgBW/day, and 98 mg/kgBW/day, respectively). The macrophage subtypes were assessed using immunohistochemistry anti-CD68 for M1 and anti-Arginase I for M2. MCP-1 and IL-10 mRNA expressions were analyzed using semi-quantitative PCR. Results showed that yacon leaf extract could significantly lower the M2 macrophage count (p<0.001) and the mRNA expressions of MCP-1 and IL-10 in all yacon-treated groups when compared to the SN group. However, the M1 macrophage count was only lower in the YK2 group (p=0.009). In conclusion, the administration of yacon leaf extract could attenuate kidney injury by lowering the macrophage count and the expression of MCP-1 and IL-10.


Keywords


Chronic kidney disease, IL-10, macrophage, MCP-1, yacon

Full Text:

PDF

References


  1. Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease - a systematic review and meta-analysis. PLoS One. 2016;11(7):e0158765. Published 2016 Jul 6. doi:10.1371/journal.pone.0158765
  2. Lv JC, Zhang LX. Prevalence and disease burden of chronic kidney disease. Adv Exp Med Biol. 2019;1165:3–15. doi:10.1007/978-981-13-8871-2_1
  3. Eddy AA. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl (2011). 2014;4(1):2–8. doi:10.1038/kisup.2014.2
  4. Trial J, Cieslik KA, Haudek SB, Duerrschmid C, Entman ML. Th1/M1 conversion to th2/m2 responses in models of inflammation lacking cell death stimulates maturation of monocyte precursors to fibroblasts. Front Immunol. 2013;4:287. doi:10.3389/fimmu.2013.00287
  5. Adhyatmika A, Putri KS, Beljaars L, Melgert BN. The Elusive Antifibrotic Macrophage. Front Med (Lausanne). 2015;2:81. doi:10.3389/fmed.2015.00081
  6. Honore SM, Cabrera WM, Genta SB, Sanchez SS. Protective effect of yacon leaves decoction against early nephropathy in experimental diabetic rats. Food Chem Toxicol. 2012;50: 1704–15. doi:10.1016/j.fct.2012.02.073
  7. Widowati W, Tjokropranoto R, Onggowidjaja P, et al. Protective effect of yacon leaves extract (Smallanthus sonchifolius (Poepp.) H. Rob) through antifibrosis, anti-inflammatory, and antioxidant mechanisms toward diabetic nephropathy. Res Pharm Sci. 2023;18(3):336–45. doi:10.4103/1735-5362.371589
  8. Yan MR, Welch R, Rush EC, Xiang X, Wang X. A Sustainable wholesome foodstuff; health effects and potential dietotherapy applications of yacon. Nutrients. 2019;11(11):2632. doi:10.3390/nu11112632
  9. Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res. 2014;63:81–90.
  10. Rogers W, Hutchison K, Skea ZC, Campbell MK. Strengthening the ethical assessment of placebo-controlled surgical trials: three proposals. BMC Med Ethics. 2014;15:78. doi: 10.1186/1472-6939-15-78
  11. Cahyawati PN, Ngatidjan, Sari DCR, Romi MM, Arfian N. Simvastatin attenuates renal failure in mice with 5/6 subtotal nephrectomy. Int J Pharm Pharm Sci. 2017;9(5):12–7.
  12. Purwono S, Al Jundi ARF, Kawiyasa IM, Cahyatika AMR, Cipta AP, Andianto GA, et al. Yacon extract attenuated kidney fibrosis in 5/6-subtotal nephrectomy mouse model by upregulating HGF and BMP-7 mRNA expression. Mal J Med Health Sci. 2020;16(SUPP3):94–100.
  13. Sofyana M, Wasityastuti W, Purwono S. Jumlah makrofag M1 dan M2 serta ekspresi mRNA monocyte chemoattractant protein-1 (MCP-1) dan interleukin-10 (IL-10) pada mencit dengan nefrektomi 5/6 subtotal yang diberi ekstrak etanol daun yakon (Smallanthus sonchifolius). Yogyakarta: Universitas Gadjah Mada Theses and Dissertations Repository (in Indonesian). 2018.
  14. Howe CL, LaFrance-Corey RG, Overlee BL, Johnson RK, Clarkson BDS, Goddery EN. Inflammatory monocytes and microglia play independent roles in inflammatory ictogenesis. J Neuroinflammation. 2022;19(1):22. doi:10.1186/s12974-022-02394-1
  15. Jefferson JA, Shankland SJ. The pathogenesis of focal segmental glomerulosclerosis. Adv Chronic Kidney Dis. 2014;21(5):408–16. doi:10.1053/j.ackd.2014.05.009
  16. Bao YW, Yuan Y, Chen JH, Lin WQ. Kidney disease models: tools to identify mechanisms and potential therapeutic targets. Zool Res. 2018;39(2):72–86. doi:10.24272/j.issn.2095-8137.2017.055
  17. Kaesler N, Babler A, Floege J, Kramann R. Cardiac remodeling in chronic kidney disease. Toxins (Basel). 2020;12(3):161. doi:10.3390/toxins12030161
  18. Perry HM, Okusa MD. Endothelial dysfunction in renal interstitial fibrosis. Nephron. 2016;134(3):167–71. doi:10.1159/000447607
  19. Imig JD, Ryan MJ. Immune and inflammatory role in renal disease. Compr Physiol. 2013;3(2):957–76. doi:10.1002/cphy.c120028
  20. Wang LX, Zhang SX, Wu HJ, Rong XL, Guo J. M2b macrophage polarization and its roles in diseases. J Leukoc Biol. 2019;106(2):345–58. doi:10.1002/JLB.3RU1018-378RR
  21. Pan B, Liu G, Jiang Z, Zheng D. Regulation of renal fibrosis by macrophage polarization. Cell Physiol Biochem. 2015;35(3):1062–9. doi:10.1159/000373932
  22. Cao Q, Harris DC, Wang Y. Macrophages in kidney injury, inflammation, and fibrosis. Physiology (Bethesda). 2015;30(3):183–94. doi:10.1152/physiol.00046.2014




DOI: https://doi.org/10.15395/mkb.v56.3605

Article Metrics

Abstract view : 346 times
PDF - 143 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


 


Creative Commons License
MKB is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

 


View My Stats