Neurodegenerative and Neurobehavioral Symptoms in Jember Agricultural Workers Caused by Oxidative Stress and Neurotransmitter Disturbance

Muhammad Ihwan Narwanto, Azham Purwandhono, Kristianningrum Dian Sofiana, Zahrah Febianti, Muhammad Afiful Jauhani, Inke Kusumastuti, Elvia Rahmi Marga Putri

Abstract


Increased use of pesticides can have detrimental health consequences, one of which is chronic neurotoxicity. The symptoms include degenerative and neurobehavioral issues. Chronic neurotoxicity occurs through oxidative stress, inflammation, and neurotransmitter disturbances. This study aimed to determine chronic neurotoxicity and test malondialdehyde and cholinesterase levels as neurotoxicity biomarkers among agricultural workers in Wuluhan, Jember, Indonesia. The 60-person research sample was divided into two groups: agricultural and non-agricultural workers. The interview utilized a mini-mental score examination, Chan's questionnaire, and the Patient Health Questionnaire to analyze the cognitive impairment, Parkinsonism, and depressive symptoms. The examination of serum malondialdehyde levels was performed using the TBARS method and cholinesterase levels by photometric kinetic method at a biochemistry laboratory from October to November 2022. Results showed cognitive impairment and depressive symptoms in agricultural workers, as well as high levels of malondialdehyde and low cholinesterase levels. This study concludes the presence of chronic pesticide neurotoxicity among agricultural workers in Jember, Indonesia, and that malondialdehyde and cholinesterase levels might serve as biomarkers of pesticide-induced neurotoxicity.

Keywords


Cholinesterase, cognitive, depression, malondialdehyde, pesticides

Full Text:

PDF

References


  1. Pemerintah Kabupaten Jember. Rancangan Peraturan Daerah Kabupaten Jember Nomor 4 tahun 2015. Rencana Pembangunan Jangka Panjang Daerah tahun 2005-2025. Jember; 2015.
  2. Popp J, Pető K, Nagy J. Pesticide productivity and food security. A review. Agron Sustain Dev. 2013;33(1):243–55.
  3. Kori RK, Singh MK, Jain AK, Yadav RS. Neurochemical and behavioral dysfunctions in pesticide exposed farm workers: a clinical outcome. Indian J Clin Biochem. 2018;33(4):372–81. doi:10.1007/s12291-018-0791-5
  4. Guignet M, Dhakal K, Flannery BM, Hobson BA, Zolkowska D, Dhir A, et al. Neurobiology of disease persistent behavior deficits, neuroinflammation, and oxidative stress in a rat model of acute organophosphate intoxication. Neurobiol Dis. 2020;133:104431. doi:10.1016/j.nbd.2019.03.019
  5. Ledda C, Cannizzaro E, Cinà D, Filetti V, Vitale E, Paravizzini G, et al. Oxidative stress and DNA damage in agricultural workers after exposure to pesticides. J Occup Med Toxicol. 2021;16(1):1. doi:10.1186/s12995-020-00290-z
  6. Kapeleka JA, Sauli E, Sadik O, Ndakidemi PA. Biomonitoring of Acetylcholinesterase (AChE) Activity among smallholder horticultural farmers occupationally exposed to mixtures of pesticides in Tanzania. J Environ Public Health. 2019;2019: 1-11. doi:10.1155/2019/3084501.
  7. Hidayatullah T, Barliana MI, Pangaribuan B, Wijaya A, Sumiwi SA, Goenawan H. Hubungan faktor okupasi terhadap aktivitas asetilkolinesterase eritrosit dan fungsi kognitif pada petani yang menggunakan pestisida organofosfat. Indones J Clin Pharm. 2020;9(2):128.
  8. Weisskopf MG, Moisan F, Tzourio C, Rathouz PJ, Elbaz A. Pesticide exposure and depression among agricultural workers in France. Am J Epidemiol. 2013;178(7):1051–8. doi:10.1093/aje/kwt089
  9. Jackson TA, Moorey HC, Sheehan B, Maclullich AMJ, Gladman JR, Lord JM. Acetylcholinesterase activity measurement and clinical features of delirium. Dement Geriatr Cogn Disord. 2017;43(1-2):29–37. doi:10.1159/000452832.
  10. Malueka RG, Rahman A, Dwianingsih EK, Panggabean AS, Halwan Fuad Bayuangga HF, Alifaningdyah S, et al. Blood cholinesterase level is associated with cognitive function in indonesian school-age children exposed to pesticides. Open Access Maced J Med Sci. 2020;25(8):81-86.
  11. Neupane D, Jørs E, Peter L, Brandt A. Plasma cholinesterase levels of nepalese farmers following exposure to organophosphate pesticides. Environmental Health Insights. 2017;(11):1-4. doi:10.1177/1178630217719269
  12. Richardson JR, Fitsanakis V, Westerink R, Anumantha G. Neurotoxicity of Pesticides. Acta Neuropathol. 2019;138(3):343–62. doi:10.1007/s00401-019-02033-9
  13. Maula N, Rahmadani N, Rachmawati DA, Elfiah U. Perbedaan Kadar Malondialdehid (MDA) plasma pada petani yang menggunakan pestisida kimia dan petani yang menggunakan pestisida organik. Journal of Agromedicine and Medical Sciences. 2018;4(3):165–70.
  14. Vellingiri B, Chandrasekhar M, Sabari SS, Gopalakrishnan AV, Narayanasamy A, Venkatesan D, et al. Neurotoxicity of pesticides – a link to neurodegeneration. Ecotoxicol Environ Saf. 2022;243:113972. doi:10.1016/j.ecoenv.2022.113972
  15. Lee KM, Park S, Lee K, Oh S, Ko SB. Pesticide metabolite and oxidative stress in male farmers exposed to pesticide. Ann Occup Environ Med. 2017;29:5. doi:10.1186/s40557-017-0162-3
  16. Kim J-Y, Park S-j, Kim S-K, Kim C-S, Kim T-H, Min S-H, et al. Pesticide exposure and cognitive decline in a rural South Korean population. PLoS ONE. 2019;14(3): e0213738.
  17. Narwanto MI, Purwandhono A, Sofiana KD, Febianti Z, Rahmi E, Putri M, et al. Neurotoxicity of chlorpyrifos, carbofuran, and cypermethrin in adolescent rats’ brain. Majalah Kedokteran Bandung. 2022;54(4):202–7.
  18. Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal. 2011;14(10):2013–54. doi:10.1089/ars.2010.3208.
  19. Antunes A, Aita A, Jade N, Dirleise DO, Bonfanti D, Appel M, et al. Long‑term and low‑dose malathion exposure causes cognitive impairment in adult mice: evidence of hippocampal mitochondrial dysfunction, astrogliosis and apoptotic events. Arch Toxicol. 2016;90(3):647–60.
  20. Kori RK, Thakur RS, Kumar R, Yadav RS. Assessment of adverse health effects among chronic pesticide-exposed farm workers in Sagar District of Madhya Pradesh, India. Int J Nutr Pharmacol Neurol Dis. 2018;8:153-61.
  21. Beard JD, Umbach DM, Hoppin JA, Richards M, Alavanja MCR, Blair A, et al. Pesticide exposure and depression among male private pesticide applicators in the agricultural health study. Environ Health Perspect. 2014;122(9):984–91. doi:10.1289/ehp.1307450
  22. Furlong MA, Paul KC, Cockburn M, Bronstein J, Keener A, Rosario ID, et al. Ambient pyrethroid pesticide exposures in adult life and depression in older residents of California’s Central Valley. Environ Epidemiol. 2020;4(6):e123. doi:10.1097/EE9.0000000000000123
  23. Li Z, Ruan M, Chen J, Fang Y. Major depressive disorder: advances in neuroscience research and translational applications. Neurosci. Bull. 2021;37(6):863–880. doi:10.1007/s12264-021-00638-3
  24. Shrestha S, Parks CG, Umbach DM, Richards-barber M, Hofmann JN, Chen H, et al. Pesticide use and incident Parkinson’s disease in a cohort of farmers and their spouses. Environ Res. 2020;191:110186. doi:10.1016/j.envres.2020.110186
  25. Del Brutto OH, Santibáñez R, Santamaría M. Prevalence of Parkinson’s disease in a rural village of coastal Ecuador. A two-phase door-to-door survey. Acta Neurol Belg. 2013;113(3):253–6. doi:10.1007/s13760-013-0181-y




DOI: https://doi.org/10.15395/mkb.v56.3508

Article Metrics

Abstract view : 291 times
PDF - 160 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


 


Creative Commons License
MKB is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

 


View My Stats