Comparison between Use of Antibiotics and Argentum (Ag) in Infected Wound Healing

Yoyos Dias Ismiarto, Fadlyansyah Farid Husain, Farry Farry


Infected wound is a common problem encountered in the field of Orthopedics. Various procedures have been applied in order to achieve the effective treatment for wound infection. However, until recently, the biomolecular responses to those remain unclear. This study aimed to compare the effectiveness of antibiotics and argentum in infected wound healing by analyzing the FGF-2 and FGF-7 expressions; fibroblasts; bacteria colonization; and wound contraction rate during the proliferation phase of wound healing. This study was performed from May to September 2016 at the Pharmacology Research Laboratory, Faculty of Medicine, Padjadjaran  University. A randomized clinical laboratory experimental trial with repetitive measures was performed in male rabbits that had been wounded and inoculated by 0.5 MF Staphylococcus aureus. Sample was collected before(Day 6) and after (Day 14) the application of antibiotics and argentum. The consecutive sampling method was used to determine the two treatment groups: (I) antibiotic group and (II) argentum group.  The argentum group showed higher FGF-2 protein level, FGF-7 protein level, fibroblast count, and wound contraction rate with p<0.05 when compared to the antibiotic group. The use of argentum gave excellent responses to wound repair as indicated by elevated FGF-2 and FGF-7 levels; fibroblast counts; and wound contraction rate. The combination of both treatments might give synergistic responses and  better results in healing infected wound. Argentum is more effective than antibiotics to increase the FGF-2 and FGF-7 levels; fibroblasts count; and wound contraction rate in the proliferative phase of infected wound healing. Antibiotics are more effective than argentum to decrease bacteria colonization.

Key words: Bacteria colonization, FGF-2 protein, FGF-7 protein, fibroblast count, wound contraction rate


Perbandingan antara Penggunaan Antibiotik dan Argentum (Ag) dalam Penyembuhan Luka Terinfeksi

Luka terinfeksi sering kali kita temui dalam permasalahan di bidang orthopedi. Berbagai jenis prosedur ditemukan untuk mengurangi angka kejadian infeksi, namun belum sesuai dengan yang diharapkan. Tujuan penelitian ini adalah membandingkan efektivitas antibiotik dengan argentum dengan menilai ekspresi dari FGF-2, FGF-7, fibroblasts dan rerata kotraksi luka saat fase proliferasi penyembuhan luka. Penelitian ini dilakukan selama bulan Juni hingga September 2017 di Laboratorium Penelitian Farmakologi Fakultas Kedokteran Universitas Padjadjaran. Dilakukan pada kelinci jantan yang telah terluka dan diinokulasi oleh Staphylococcus aureus sebanyak 0,5 MF. Sampel diambil hari ke-6 dan ke-14 aplikasi antibiotik dan argentum. Dengan metode sampling berurutan di tiap-tiap kelompok perlakuan: (I) kelompok antibiotik; dan (II) kelompok argentum. Kelompok Argentum menunjukkan tingkat protein FGF-2, protein FGF-7, jumlah fibroblas dan tingkat kontraksi luka yang lebih tinggi dengan p <0,05 dibanding dengan kelompok Ab. Penggunaan argentum memberikan respons yang sangat baik terhadap perbaikan luka seperti yang ditunjukkan oleh peningkatan kadar FGF-2, FGF-7, jumlah fibroblast, dan tingkat kontraksi luka. Kombinasi kedua pengobatan mungkin memberikan respons sinergis dan memberikan hasil yang lebih baik dalam penyembuhan luka yang terinfeksi. Argentum lebih efektif daripada antibiotik untuk meningkatkan kadar FGF-2 dan FGF-7, jumlah fibroblas, dan tingkat kontraksi luka dalam fase proliferatif dari penyembuhan luka yang terinfeksi. Antibiotik lebih efektif daripada argentum untuk menurunkan kolonisasi bakteri.

Kata kunci : FGF-2 protein, FGF-7 protein, jumlah fibroblast, kolonisasi bakteri , rata-rata penyembuhan luka


Bacteria colonization, FGF-2 protein, FGF-7 protein, fibroblast count, wound contraction rate

Full Text:



Siegel HJ. Management of open wounds: lessons from orthopedic oncology. Orthop Clin North Am. 2014;45(1):99–107.

Vazquez J. The emerging problem of infectious diseases: The impact of antimicrobial resistance in wound care. Wounds: a compendium of clinical research and practice. 1-9. Wounds: a compendium of clinical research and practice (WOUNDS). 2006;1–17.

Childs SG. Biofilm: the pathogenesis of slime glycocalyx. Orthop Nurs. 2008;27(6):361–9.

Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013; (136):1–51.

Balakatounis KC, Angoules AG. Low-intensity electrical stimulation in wound healing: review of the efficacy of externally applied currents resembling the current of injury. Eplasty. 2008;8:e28.

Moore RA, Liedl DA, Jenkins S, Andrews KL. Using a silver-coated polymeric substrate for the management of chronic ulcerations: the initial Mayo Clinic experience. Adv Skin Wound Care. 2008;21(11):517–20.

Thakral G, Lafontaine J, Najafi B, Talal TK, Kim P, Lavery LA. Electrical stimulation to accelerate wound healing. Diabet Foot Ankle. 2013;4:1–104.

Mian M, Aloisi R, Benetti D, Rosini S, Fantozzi R. Role of heterologous collagen (biopad) in the tissue repair process of wounds in rat. Argentum Med LLC. 2007;1:1–3.

Sinno H, Prakash S. Complements and the wound healing cascade: an updated review. Plastic Surgery International. 2013;2013:1–7.

Kim MH, Liu W, Borjesson DL, Curry FR, Miller LS, Cheung AL, et al. Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging. J Invest Dermatol. 2008;128(7):1812–20.

Werner S, Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003;83(3):835–70.

Monge Jodra V, Sainz de Los Terreros Soler L, Diaz-Agero Perez C, Saa Requejo CM, Plana Farras N. Excess length of stay attributable to surgical site infection following hip replacement: a nested case-control study. Infect Control Hosp Epidemiol. 2006;27(12):1299–303.

Cosgrove SE. The relationship between antimicrobial resistance and patient outcomes: mortality, length of hospital stay, and health care costs. Clin Infect Dis. 2006;42 (Suppl 2):S82–9.

Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ. The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol. 1999;20(11):725–30.

Jain JG, Housman ST, Nicolau DP. Humanized tissue pharmacodynamics of cefazolin against commonly isolated pathogens in skin and skin structure infections. J Antimicrob Chemother. 2014;69(9):2443–7.

Shimoaka T, Ogasawara T, Yonamine A, Chikazu D, Kawano H, Nakamura K et al. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J Biol Chem. 2002;277(9):7493–500.

Harris LG, Foster SJ, Richards RG. An introduction to Staphylococcus aureus, and techniques for identifying and quantifying S. aureus adhesins in relation to adhesion to biomaterials: review. Eur Cell Mater. 2002;4: 39–60.

Jaafar SE. Wound healing as well as fibroblast and neutrophil numbers in a skin expoed to infrared and electrical stimulation. Journal of Kirkuk University–Scientific Studies. 2011;6(2):50–61.

Chao PG, Lu HH, Hung CT, Nicoll SB, Bulinski JC. Effects of applied dc electric field on ligament fibroblast migration and wound healing. Connective Tissue Res. 2007;48: 188–97.

Mehmandoust FG, Torkaman G, Firoozabadi M, Talebi G. Anodal and cathodal pulsed electrical stimulation on skin wound healing in guinea pigs. J Rehabil Res Dev. 2007;44(4):611–8.


Article Metrics

Abstract view : 702 times
PDF - 323 times

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


Creative Commons License
MKB is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License


View My Stats