Prevalensi dan Pola Sensitivitas Antimikroba Multidrug Resistant Pseudomonas aeruginosa di RSUD Arifin Achmad
Abstract
Resistensi antimikrob merupakan salah satu masalah kesehatan masyarakat yang besar yang dihadapi manusia sejak era ditemukan antimikrob. Angka multidrug resistant P. aeruginosa salah satunya semakin meningkat di berbagai belahan dunia yang berdampak pada kesulitan penanganan infeksi oleh bakteri ini. Penelitian deskriptif retrospektif ini bertujuan mengetahui prevalensi MDR P.aeruginosa dan pola sensitivitasnya. Data diambil dari hasil kultur bakteri dan uji resistensi antibiotik dari berbagai spesimen klinis pasien di RSUD Arifin Achmad sepanjang tahun 2015. Uji resistensi dilakukan dengan menggunakan alat Vitek 2 compact. MDR P. aeruginosa didefinisikan sebagai P. aeruginosa yang tidak sensitif terhadap tiga atau lebih golongan antibiotik berikut: meropenem atau imipenem, siprofloksasin, gentamisin atau amikasin, seftazidim atau sefepim, dan piperasilin/tazobaktam. Prevalensi MDR P. aeruginosa adalah 45,5%. Isolat MDR P. aeruginosa serta paling banyak berasal dari instalasi perawatan surgikal dan instalasi perawatan intensif, dan paling banyak berasal dari spesimen pus dan sputum. Sensitivitas P. aeruginosa paling baik dengan amikasin (76,9%), piperasilin/tazobaktam (57,2%), meropenem (57,0%), gentamisin (54,5%), sefepim (53,7%), seftazidim (49,6%), ciprofloksasin (48,8%) dan aztreonam (35,5%). Sensitivitas MDR P.aeruginosa terhadap antibiotik jauh lebih rendah dibanding dengan P. aeruginosa. Penelitian ini menunjukkan angka MDR P. aeruginosa tinggi khususnya di Pekanbaru. Pola sensitifas P. aeruginosa dapat menjadi pedoman dalam memilih antibiotik yang sesuai untuk infeksi karena P. aeruginosa.
Kata kunci: Multidrug resistant, Pekanbaru, pseudomonas aeruginosa, sensitivitas antibiotik
Prevalence and Antimicrobial Susceptibility Profile of Multidrug Resistant Pseudomonas aeruginosa in Arifin Achmad General Hospital
Antimicrobial resistance is one of major public health problems since the era of antimicrobial discovery, inclusing multidrug resistant (MDR) P. aeruginosa. The prevalence of this resistance is increasing in different parts of the world, leading to the difficulties in dealing with this bacteria. The aim of this descriptive retrospective study was to determine the prevalence of MDR P. aeruginosa and its susceptibility profile. Data were collected from the bacteria cultures and antibiotic susceptibility test results from various clinical specimens in Arifin Achmad General Hospital throughout 2015. The test was performed in VITEK 2 Compact. MDR P. aeruginosa is defined as P. aeruginosa which is not sensitive to three or more following antibiotics: meropenem or imipenem, ciprofloxacin, gentamicin or amikacin, ceftazidime or cefepime, and piperacilin/tazobactam. The prevalence of MDR P. aeruginosa was 45.5%. The isolates of MDR P. aeruginosa was mostly derived from pus and sputum specimens from the surgical ward and intensive care unit. . The most sensitive antibiotics was amikacin (76.9%) followed by piperacilin/tazobactam (57.2%), meropenem (57.0%), gentamicin (54.5%), cefepime (53.7%), ceftazidime (49.6%), ciprofloxacin (48.8%), and aztreonam (35.5%). Antibiotic sensitivity in MDR P. aeruginosa was much lower than in P. aeruginosa. This study shows a high prevalence of MDR P. aeruginosa, especially in Pekanbaru. This susceptibility profile can serve as a guideline for the selection of appropriate antibiotics for infections caused by P. aeruginosa.
Key words: Antibiotic susceptibility, multidrug resistant, Pekanbaru, pseudomonas aeruginosa
Keywords
Full Text:
PDFReferences
Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 2009; 22(4): 582–610.
Wu DC, Chan WW, Metelitsa AI, Fiorillo L, Lin AN. Pseudomonas skin infection. Am. J. Clin. Dermatol. 2011; 12(3): 157–169.
El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, dkk. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015; 10(10): 1683-706.
Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, dkk. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18(3): 268-281.
Kanj SS, Kanafani ZA. Current concepts in antimicrobial therapy against resistant gram-negative organisms: extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin Proc. 2011; 86(3): 250-259.
Nathwani D, Raman G, Sulham K, Gavaghan M, Menon V. Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2014; 3: 32. (online). Tersedia dari : https://www.ncbi.nlm.gov
Rustini, Istiqamah S, Armin F. Penentuan multidrug resisten Pseudomonas aeruginosa (MDRPA) yang berasal dari sampel klinis pasien RSUP Dr. M. Djamil Padang. Prosiding Rakernas dan Pertemuan Ilmiah Tahunan Ikatan Apoteker Indonesia; 2016; 87 – 91.
Dejsirilert S, Suankratay C, Trakulsomboon S, Thongmali O, Sawanpanyalert P, Aswapokee N, Tantisiriwat W. National Antimicrobial Resistance Surveillance, Thailand (NARST) data among clinical isolates of Pseudomonas aeruginosa in Thailand from 2000 to 2005. J Med Assoc Thai. 2009; 92 (4): 68-75.
Katvoravutthichai C, Boonbumrung K, Tiyawisutsri R. Prevalence of β-lactamase classes A, C, and D among clinical isolates of Pseudomonas aeruginosa from a tertiary-level hospital in Bangkok, Thailand. Genet Mol Res. 2016; 15(3) (online). Tersedia dari : https://www.ncbi.nlm.gov
Peng Y, Shi J, Bu T, Li Y, Ye X, Chen X, dkk. Alarming and increasing prevalence of multidrug-resistant Pseudomonas aeruginosa among healthcare-associated infections in China: A meta-analysis of cross-sectional studies. J Glob Antimicrob Resist. 2015; 3(3): 155-160.
Lin KY, Lauderdale TL, Wang JT, Chang SC. Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: prevalence, risk factors, and impact on outcome of infections. J Microbiol Immunol Infect. 2016; 49(1): 52-9.
Yoshimura H, To H, Narita C, Tokushige C, Kakudo T, Otsubo C, dkk. Antimicrobial susceptibility patterns of Pseudomonas aeruginosa isolated from 2006 to 2008 in Fukuoka University Hospital. Jpn J Antibiot. 2009; 62(6): 502-508.
Logan LK, Gandra S, Mandal S, Klein EY, Levinson J, Weinstein RA, dkk. Multidrug- and carbapenem-resistant Pseudomonas aeruginosa in children, United States, 1999-2012. J Pediatric Infect Dis Soc. 2016;XX:1-8.
de Matos ECO, de Matos HJ, Conceição ML, Rodrigues YC, Carneiro I dan Lima KVB. Clinical and microbiological features of infections caused by Pseudomonas aeruginosa in patients hospitalized in intensive care units. Rev Soc Bras Med Trop. 2016; 49(3): 305-311.
Knoester M, de Boer MG, Maarleveld JJ, Claas EC, Bernards AT, de Jonge E, dkk. An integrated approach to control a prolonged outbreak of multidrug-resistant Pseudomonas aeruginosa in an intensive care unit. Clin Microbiol Infect. 2014; 20(4): 207-215.
Ullah W, Qasim M, Rahman H, Bari F, Khan S, Rehman ZU, dkk. Multi drug resistant Pseudomonas aeruginosa: pathogen burden and associated antibiogram in a tertiary care hospital of Pakistan. Microb Pathog. 2016; 97: 209-212.
Alvarez-Lerma F, Grau S. Management of antimicrobial use in the intensive care unit. Drugs. 2012; 72: 447–70.
Cerceo E, Deitelzweig SB, Sherman BM, Amin AN. Multidrug-resistant gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options. Microb Drug Resist. 2016; 22(5): 412-431.
Falagas ME, Kastoris AC, Karageorgopoulos DE, Rafailidis PI. Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents 2009; 34: 111–120.
Samonis G, Maraki S, Karageorgopoulos DE, Vouloumanou EK, Falagas ME. Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis 2012; 31: 695–701.
DOI: https://doi.org/10.15395/mkb.v50n1.1150
Article Metrics
Abstract view : 3718 timesPDF - 2281 times
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
MKB is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
View My Stats