Hubungan Profil Lipid (Kadar Trigliserida, HDL, LDL, Total Kolesterol) dengan Jenis Infeksi Bakteri pada Pasien Sepsis
Abstract
Gangguan profil lipid berhubungan dengan peningkatan kejadian gagal organ dan kematian pada pasien
sepsis. Gangguan profil lipid mungkin berbeda antarjenis infeksi bakteri (gram positif vs gram negatif),
perbedaan ini mungkin jadi disebabkan oleh perbedaan klirens endotoksin yang berbeda dan mekanisme imunologis host yang berkaitan dengan metabolism lipid. Tujuan, menganalisis perbedaan profil kadar lipid (HDL, LDL, Trigliserida, total kolesterol) dengan jenis infeksi bakteri pada pasien sepsis di ruang perawatan intensif RSUD Dr. Soetomo yang dilaksanakan pada bulan April–Juli 2020. Penelitian ini merupakan penelitian analitik observasional pada pasien dewasa yang memenuhi kritera sepsis-3. Jenis infeksi bakteri diklasifikasikan menjadi infeksi bakteri gram negatif, infeksi bakteri gram positif, infeksi campuran, dan tidak tumbuh kuman. Penelitian ini menganalisis perbedaan profil kadar lipid antarjenis infeksi bakteri menggunakan analisis normalitas data dan analisis varian data. Hasil dari 38 pasien sepsis dewasa pada penelitian ini didapatkan 13 pasien infeksi bakteri gram negatif, 13 pasien infeksi gram positif, 5 pasien infeksi campuran gram positif dan negatif, dan tidak didapatkan pertumbuhan kuman pada 7 pasien. Kadar HDL lebih rendah pada infeksi bakteri gram negatif dan infeksi bakteri campuran gram positif-gram negatif (p<0,05). Kadar trigliserida lebih tinggi pada infeksi bakteri gram negatif dan infeksi bakteri campuran gram positif - gram negatif (p<0,05). Tidak terdapat perbedaan bermakna kadar LDL dan total kolesterol antarjenis infeksi bakteri. Simpulan, kadar HDL plasma lebiH rendah dan kadar trigliserida lebih tinggi pada pasien sepsis infeksi bakteri gram negatif dan bakteri campuran gram positif–gram negatif disbanding dengan pasien sepsis infeksi bakteri gram positif dan tidak didapatkan pertumbuhan kuman.
Relationship of Lipid Profile (Levels of Triglyceride, HDL, LDL, Total Cholesterol) with Types of Bacterial Infection in Sepsis Patients
Impaired lipid profiles are associated with an increased incidence of organ failure and mortality in septic patients. Disorders of the lipid profile may differ between bacterial infection types (gram-positive vs gram-negative). Differences could be due to dissimilarities in different endotoxin clearance and host immunological mechanisms related to lipid metabolism. The study analyzed differences in lipid profiles (HDL, LDL, triglycerides, total cholesterol) with the bacterial infection type in septic patients in the intensive care room of Dr. Soetomo Hospital in April–July 2020. This study was an observational analytic study of 38 adult patients who met the criteria for sepsis-3. Bacterial infection types were classified into gram-negative bacterial infections, gram-positive bacterial infections, mixed infections and culture negative. This study analyzed differences in lipid profiles between bacterial infection types, and used data normality analysis and data variant analysis. Results showed that 13 patients had gram-negative bacterial infection, 13 patients were with gram-positive infection, five patients were with mixed gram-positive gram-negative infections, and seven patients had no germ growth. Plasma HDL levels were lower in gram-negative bacterial infections and mixed gram-positive gram-negative bacterial infections (p<0.05). Plasma triglyceride levels were higher in gram-negative bacterial infections and mixed gram-positive gram-negative bacterial infections (p<0.05). There was no significant difference in LDL levels and total plasma cholesterol between bacterial infections types. In conclusion, plasma HDL levels are significantly lower, and triglyceride levels were significantly higher in septic patients with gram-negative and mixed gram-positive bacterial infections than in sepsis patients with gram-positive bacterial infections and culture negative.
Keywords
Full Text:
PDFReferences
Assessing available information on the burden of sepsis: Global estimates of incidence, prevalence and mortality. Jawad, L, Luksic, I and Rafnsson, Sb. 1, 2012, Journal of Global Health, Vol. 2, p. 010404.
Data Ruang Resusitasi. Surabaya : Data Internal RSUD dr Soetomo, 2016.
Severe Sepsis and Septic Shock. Angus, DC and Poll, TV. 2013, New England Journal of Medicine, Vol. 369, pp. 840-51.
Prognostic implications of serum lipid metabolism over time during sepsis. Lee, Sang Hoon, et al. 2015, Biomed Research International, pp. 1-8.
Gram negative bacteremia induces grreater magnitude of inflammatory response than gram positif bacteremia. Abe, Ryuzo, et al. 2, 2010, Critical care, Vol. 14, pp. 1-7.
Peptidoglycan and Lipothecoic acid in gram positive bacterial sepsis: receptors, signal transductoin, biological effects, and synergism. Wang, JAcob E; Dahle, Maria K; McDonald, Michelle; Foster, Simon J; Aasen, Ansgar O; Thiemermann, Christoph. 5, 2003, Shock, Vol. 20, pp. 402-414.
Hubungan antara profil lipid dengan skor sofa dan mortalitas pasien sepsis di ruang resusitasi dan observasi intensif RSUD dr Soetomo Surabaya. Putri, Rieza Furry Anissa, Setiawan, Philia and Airlangga, Prananda Surya. 2018, pp. 1-121.
Decreased high-density lipoprotein cholesterol level is an early prognostic marker for organ dysfunction and death in patients with suspected sepsis. Cirstea, Mihai, et al. 2017, Journal of critical care, Vol. 38, pp. 289-294.
The delta high-density lipoprotein cholesterol ratio; anovel parameter for gram negative sepsis. Zou, Guoying, et al. 5, 2016, Springer Plus, Vol. 1044, pp. 1-12.
Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanism and consequences to the host. Khovidunkit, Weerapan, et al. 2004, Journal of Lipid Research, Vol. 45, pp. 1169-1196.
Triglyceride-rich lipoproteins as agents of innate immunity. Barcia, M Anthony and Harris, Hobart W. 41, 2016, Oxford Journals, Vol. 2005, pp. 498-503.
Chylomicron can inhibit endotoxin activity in vitro. Eichbaum, EB, et al. 1991, Journal of Surgical and resuscitation, Vol. 51, pp. 413-6.
Effects of human apolipoprotein A-I on endotoxin-induced leukocyte adhesion on endothelial cells in vivo and on the growth of Escherichia coli in vitro. Thaveeratitham, Premtip, Plengpnich, Wanee and Naen Udom, Worakamol. 1, 2007, Journal of endotoxin reserach, Vol. 13, pp. 58-64.
The central role of proprotein convertase subtisilin/kexin type 9 in septic pathogen lipid transport and clearance. Walley, KR, et al. 11, 2015, American Journal of Respiration and Critical Care Medicine, Vol. 192, pp. 1275-1286.
The impact of bacteremia on lipoprotein concentrations and patient's outcome: a retrospective analysis. Pazzini, Alex, et al. 2019, Journal of clinical microbiology & infectious disease, pp. 1-8.
Colangiulo, a. et al., 2017. Serum lipid profile and survival in patients with sepsis. Nutrition, metabolism and cardiovascular disease, 27(1), p. 15.
Leeuwen, H. et al., 2003. Lipoprotein metabolism in patients with severe sepsis. Critical care medicine, 31(5), pp. 1359-1366.
Jung-Yien, C., Jih-Shuin, J., Chong-Jen, Y. & Pan-CHyr, Y., 2005. Low serum level of high-density lipoprotein cholesterol is a poor prognostic factoir for severe sepsis. Critical care medicine, 33(8), pp. 1688-93.
Pazzini, A. et al., 2019. The impact of bacteremia on lipoprotein concentrations and patient's outcome: a retrospective analysis. Journal of clinical microbiology & infectious disease, pp. 1-8.
Black, L. P. et al., 2020. Quantitative and Qualitative Assessments of Cholesterol Association with Bacterial Infection type in Sepsis and Septic Shock. Journal of Intensive Care Medicine, XX(X), pp. 1-10.
Pirillo, A., Catapano, A. L. & Norata, G. D., 2015. HDL in Infectious disease and Sepsis. In: E. A, ed. Handbook of experimental pharmacology. s.l.:s.n., pp. 485-500.
Grunfeld, C. et al., 1999. Lipoproteins inhibit macrophage actication by lipothecoic acid. J. Lipid Res, 40(2), pp. 245-252.20
Feng, Q. P., Wei, Q. W. & Chaugai, S., 2019. Cholesterol Levels and Risk for Sepsis Among Patients Admitted to the Hospital with infectino. JAMA Network.
Esteve, E., Ricart, W. & Fernandez-Real, J. M., 2005. Dyslipidemia and inflammation; an evolutionary conserved mechanism. Clinical nutrition, Volume 24, pp. 16-31.
Memon, R., Grunfeld, C., Moser, A. & Feingold, K., 1993. Tumor necrosis factor mediates the effects of endotoxin on cholesterol and triglyceride metabolism in mice. Endocrinology, Volume 132, pp. 2246-53.
DOI: https://doi.org/10.15851/jap.v8n3.2156
Article Metrics
Abstract view : 13616 timesPDF - 4643 times
This Journal indexed by
JAP is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
View My Stats