Aktivitas Makrofag Meningkat Pada Aorta Tikus Hiperkolesterolemia

Neng Fisheri Kurniati, Maritsa Nurfatwa, Aluicia Anita Artarini

Abstract


Aterosklerosis merupakan, kondisi inflamasi kronik, faktor resiko penyakit kardiovaskular disebabkan oleh tingginya kadar kolesterol. Tujuan penelitian ini mengevaluasi peran mieloperoksidase (MPO) dan makrofag di aorta dan jantung tikus yang diinduksi hiperkolesterolemia. Penelitian ini dilakukan pada Maret–Agustus 2016 di Laboratorium Farmakologi dan Bioteknologi Institut Teknologi Bandung. Tikus dikelompokkan menjadi kelompok normal dan hiperkolesterolemia. Induksi hiperkolesterolemia dilakukan dengan pemberian pakan tinggi kolesterol, kolesterol murni, asam kolat dan propiltiourasil (KKT) selama 5 bulan. Kolesterol total diukur sebelum induksi, pertengahan, dan setelah induksi. HDL, trigliserida (TG), LDL, indeks aterogenik (IA), jumlah sel darah merah dan sel darah putih diukur setelah induksi. Deteksi ekspresi mieloperoksidase (MPO) dan CD68 pada aorta dan jantung dilakukan dengan metode dot blot dan ELISA. Induksi hiperkolesterolemia selama 5 bulan menghasilkan kadar kolesterol total (364,10±148,46 mg/dL), HDL (7,90±1,29 mg/dL), LDL (307,47±116,91 mg/dL), dan Indeks Aterogenik (1,04±0,23). Kadar kolesterol yang tinggi meningkatkan jumlah sel darah putih yang bersirkulasi namun tidak mempengaruhi jumlah sel darah merah. Jumlah makrofag yang berada di jaringan aorta dan jantung kelompok hiperkolesterolemia meningkat secara signifikan dibanding dengan kelompok normal. Namun, peningkatan aktivitas makrofag yang diukur dari ekspresi MPO hanya teramati pada aorta hewan hiperkolesterolemia, tidak pada jantung. Simpulan, aktivitas makrofag meningkat hanya pada aorta hewan hiperkolesterolemia diduga berperan dalam pembentukan plak ateroma di aorta. 

Kata kunci: Aorta, CD68, hiperkolesterolemia, makrofag, mieloperoksidase

 

Macrophage Activity Increases in Hypercholesterolemia Rat Aorta

Atherosclerosis, which is an inflammatory chronic condition, is one of the major risk factors of cardiovascular disease caused by hypercholesterolemia. This study aimed to evaluate role of myeloperoxidase (MPO) and macrophage in aorta and heart of rat hypercholesterolemia. This research was conducted in March–August 2016 at Pharmacology and Biotechnology Laboratory of Institut Teknologi Bandung. Rats were divided into normal and hypercholesterolemia groups. Hypercholesterolemia was induced by cholesterol feeding and CCT (cholesterol, cholic acid and propiltiourasil) oral administration for 5 months. Total cholesterol was measured before induction (T0), in the middle (T2.5), and after induction (T5). HDL, triglyceride (TG), LDL, aterogenic index (IA), red blood, and white blood cell count was measured after induction (T5). Success of induction was proven by the elevation of cholesterol total value of hypercholesterolemia group compared to normal group. Myeloperoxidase (MPO) and CD68 in aorta and heart hypercholesterolemia rat was detected by dot blot and ELISA method. Hypercholesterolemia group showed significant differences in total cholesterol value (364.10±148.46 mg/dL), HDL value (7.90±1.29 mg/dL ), LDL value (307.47±116.91) and Atherogenic Index (1.04±0.23). High level of cholesterol increases circulating white blood cells but have no effect on  circulating red blood cells. Macrophage in the  hypercholesterolemia group increased significantly compared to the normal group. However, the increase in macrophage activity identified throughMPO expression was only seen in hypercholesterolemic aorta but not  in the heart. It is concluded that macrophage activities increase in the aortic tissue, but  not in the heart tissue of the hypercholesterolemia group, which may contribute to the formation of atheroma plaque in aorta. 

Key words: Aorta, CD68, hypercholesterolemia, macrophage, myeloperoxidase


Keywords


Aorta, CD68, hiperkolesterolemia, makrofag, mieloperoksidase

Full Text:

PDF

References


Pusat Data dan Informasi. Situasi Kesehatan Jantung. Jakarta: Kementerian Kesehatan Republik Indonesia; 2014.

Frohlich ED, Quinlan PJ. Coronary heart disease risk factors: public impact of initial and later-announced risks. Ochsner J. 2014; 14(4):532–7.

Ilhan F, Kalkanli ST. Atherosclerosis and the Role of Immune Cells. World J Clin Cases. 2015;3(4):345–52.

Chellan B, Reardon CA, Getz GS, Bowmann MAH. Enzymatically modified low-density lipoprotein promotes foam cell formation in smooth muscle cells via macropinocytosis and enhances receptor-mediated uptake of oxidized low-density lipoprotein. Arterioscler Thromb Vasc Biol. 2016;36(6):1101–13.

Ley K, Miller YI, Hedrick CC. Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol. 2011;31(7):1506–16.

Gautier EL, Shay T, Miller J. Gene-expression profiles and transcriptional regulatory pathways that underline the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13(11):1118–28.

Teng N, Maghzal GJ, Talib J, Rashid I, Lau AK, Stocker R. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Report. 2016;22(2):51–73.

Devi J, Johanna R. Effect of Ambrex (A Herbal Formulation) on Hematological Variables in Hyperlipidemic Rats. Pakistan J Biol Sci. 2014;17(5):740–3.

Kurniati NF, Permatasari A, Artarini AA. The Effect of Simvastatin, Aspirin, and Their Combination in Reduction of Atheroma Plaque. AIP Conference Proceedings. 2015;1677(1):1–5.

Meaney S. Epigenetic regulation of cholesterol homeostasis. Frontiers in Genetics. 2014;5(311):1–10.

Kapourchali FR, Surendiran G, Chen L, Ultz E, Bahadori B, Moghadasian MH. Animal model of atherosclerosis. World J Clin Cases. 2014;2(5):126–32.

Nelson RH. Hyperlipidemia as a risk factor for cardiovascular disease. National Institutes of Health. 2012;40(1):195–211.

Kajingulu MF, Lepira BF, Mbutiwi INF, Makulo JRR, Bieleli E, Nseka MN. The atherogenic dyslipidemia ratio log (tg)/HdL-C was not associated with urinary albumin excretion rate (uaer) and increased cardiovascular risk in black patients with type 2 diabetes. World J Cardiovasc Dis. 2016;6(1):14–20.

Kim HS, Ullevig SL, Zamora D, Lee CF, Asmis R. redox regulation of mapk phosphatase 1 controls monocyte migration and macrophage recruitment. PNAS. 2012;109(4):16422–23.

Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, dkk. Macrophage sortilin promotes ldl uptake, foam cell formation and atherosclerosis. Circulation Res. 2015; 116(5):789–96.

Nahrendorf M, Swirski FK. Monocyte and macrophage heterogenity in the heart. Circulation Res. 2013;112(12):1624–33.

Scharnagl H, Kleber ME, Genser B, Kickmaier S, Renner W, Weihrauch G, dkk. Association of myeloperoxidase with total and cardiovascular mortality in individuals undergoing coronary angiography-the luric study. Int J Cardiol. 2014;174(1):96–105.




DOI: http://dx.doi.org/10.15395/mkb.v50n1.1159

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.


 

This Journal indexed by

             


Creative Commons License
MKB is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

 


View My Stats