Antidiabetic Activity of Calcium Bentonite in Alloxan Monohydrate-induced Diabetic Wistar Rat Models

Galuh Alviana,1 Hendro Sudjono Yuwono,2 Nova Sylviana3
1Faculty of Medicine Universitas Padjadjaran, 2Department of Surgery Faculty of Medicine Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital, Bandung, 3Department of Physiology, Faculty of Medicine Universitas Padjadjaran

Abstract

Background: Calcium bentonite is a natural clay that has the ability to absorb toxins and metabolite excess substances and often referred to as healing clay because it is used traditionally. This study aimed to determine the ability of local calcium bentonite to absorb high blood glucose.

Methods: This study was an experimental study using 20 female Wistar rats and divided into two groups consisting of Group I (control group, n=10) and Group II (calcium bentonite group, n=10). Diabetes in rats was induced by alloxan monohydrate 150 mg/kg body weight intraperitoneally. Examination of blood glucose was performed three times; in the beginning of study, 72 hours after alloxan monohydrate induction, and four days after the given interventions. Blood glucose levels in mean values were analyzed using t-independent test. Statistically significance was considered when p<0.05.

Results: Oral calcium bentonite of 1g/kg body weight significantly lowered blood glucose level relatively to the control group with average value of 131.30 mg/dl (p=0.01).

Conclusions: Calcium bentonite significantly lowers blood glucose levels. [AMJ.2015;2(3):359–62]

Keywords: Calcium Bentonite, diabetes mellitus, hyperglycemia, traditional medicine, wistar rats

Introduction

Calcium bentonite (ca-bentonite) is a type of natural clay which has the ability to absorb water and toxic substances and referred to as one of healing clays.1 In Indonesia, ca-bentonite is traditionally used as a detoxifying agent in the gut, traumatic wounds, and skin disorders.1,2

Previous study showed that the ca-bentonite has the ability to absorb blood ureum and creatinine in rats with acute renal failure and reduce high blood cholesterol level on rat.3–6 This study aimed to determine the ability of local ca-bentonite to absorb high blood glucose.

Methods

A total of 20 adult female Wistar rats weighing 150–250g obtained from Pusat Penelitian Antar Universitas (PPAU), Institute of Technology Bandung, were used in this study. The rats were housed at the animal laboratory of the Department of Pharmacology, Faculty of Medicine, Universitas Padjadjaran, Bandung, under standard condition of food and drinking water. The study protocols and animal care procedure were approved by the Health Research Ethic Committee of Faculty of Medicine Universitas Padjadjaran.

Ca-bentonite was obtained from Chemistry Laboratory Faculty of Mathematics and Sciences Education, Universitas Pendidikan Indonesia. Rats were given 1 g/kg body weight of ca-bentonite, the same dosage which can reduce excessive blood ureum and creatininein rats with acute renal failure from previous study.1 Ca-bentonite weighs 0.25 gram was diluted with aquadest as much as 5 mL and ready to be given orally once daily for 3 days, starting 72 hrs after alloxan induction. Alloxan monohydrate from Sigma, Singapore, is used as much as 150 mg/kg body weight dissolved in 10 cc aquadest to be injected.
The experimental animals were randomly allocated into 2 groups. Group I was given aquadest as control group and Group II was given ca-bentonite as intervention, referred to as ca-bentonite group. Before measuring the blood glucose, the rats were fasting for 18 hours. Venous blood was taken from cutting of the tail end and the blood was dropped into the glucosemeter. The results will appear in 10 seconds. Blood glucose measurement was performed three times in each groups: at the time after acclimatization as the initial blood glucose levels in normal rats (Day 0), 72 hours after alloxan monohydrate induction (Day 3), and four days after the interventions was given (Day 7). Blood glucose levels were analyzed using t-independent test. Statistically significance was considered when p<0.05.

Results

The anti-diabetic effect of oral administration of aquadest and ca-bentonite on rats glucose level were shown in Table 1. This study revealed that 72 hours after induction of alloxan monohydrate produced a hyperglycemia state (Day 3), and 3 day oral ca-bentonite 1g/kg treatment resulted in a significant decrease of blood glucose level in the model of alloxan-monohydrate-induced diabetic Wistar rat treated with 1g/kg ca-bentonite (n=10) vs. aquadest as control (n=10).
induced diabetes in rats (Day 7). Aquadest
group that acts as a control group also showed
a significant decrease in the blood glucose
level.

Table 1 shows that blood glucose levels in
all groups were increased after induction of
alloxan monohydrate (Day 3), then started
to fall after the treatment was given (Day 7).
Box-plots of mean blood glucose levels 4 days
after treatment (Day 7) can be seen on Figure
1. From Figure 1, the group given ca-bentonite
had the smallest mean of blood glucose level.

Data was compared to the control group
and analyzed using t-independent test
which showed that the data was statistically
significance (p=0.01) with mean of blood
glucose level in ca-bentonite group was 131.30
mg/dl. This study has proved the effect of
alloxan monohydrate to optimally induced
diabetes mellitus three days after induction,
after which the hyperglycemia state decreased
after 3 days of treatment in both control and
treatment groups.

Discussions

Management of diabetes with agents without
any side effects is still a challenge. This concern
has led to an increase and demand for natural
products with anti-hyperglycemic activity.

Alloxan monohydrate as the diabetes-
inducing agent was known to produce diabetes
mellitus irreversibly with a single dose
administration through its ability to destroy
the beta cells of the pancreas leading to insulin
deficiency. Several in vitro studies have shown
that alloxan monohydrate is selectively toxic
to pancreatic beta cells mediated by reactive
oxygen species, leading to the induction of cell
necrosis. This experimental study revealed that the
local ca-bentonite orally administrated for
three days produced a significant decrease in
the blood glucose level in the model of alloxan
monohydrate-induced diabetes in rats. Ca-
bentonite is known as a good absorbent and
adsorbent, and has been proven in vitro.10–11

The in vivo mechanism of blood glucose
reduction after administration of ca-bentonite
is based on its good absorption and adsorption
capacity. In intestinal lumen, ca-bentonite
will absorb the glucose without getting into
the bloodstream. This mechanism is similar to
c-a-bentonite in reducing blood ureum and
creatinine in acute renal failure occurred in
Wistar rats, and high cholesterol level of highly
fat diet Wistar rats from previous studies.12

Further studies should be performed to
confirm that ca-bentonite could become useful
in the treatment of diabetes mellitus through
its unique therapeutic mechanism without
any side effects. In conclusion, ca-bentonite
significantly lowers blood glucose levels.

References

1. Eaton JR. Healing clays of the world
bentonite as used in pelotherapy, natural
and alternative medicine. Las Vegas: AVRA;
2004 [Cited 2012 May 13]; Available from:
http://www.eytonsearth.org/
introduction-clays.php.

2. Eaton JR. Green healing clay of the desert
bentonite, illite, and montmorillonite:
pelotherapy and natural medicine. Las
Vegas: AVRA; 2004 [Cited 2012 May 13];
.org/.

Effect of montmorillonite on diffusion of
urea between blood and intestine and on
absorption of intestine in rats. Zhong Yao

4. Gershkovich P, Darlington J, Sivak O,
Constantinides PP, Wasan KM. Inhibition
of intestinal absorption of cholesterol
by surface-modified nanostructured
aluminosilicate compounds. J Pharm Sci.

5. Sivak O, Darlington J, Gershkovich P,
Constantinides PP, Wasan KM. Protonated
nanostructured aluminosilicate (NSAS)
reduces plasma cholesterol concentrations
and atherosclerotic lesions
in Apolipoprotein E deficient mice fed a
high cholesterol and high fat diet. Lipids

S, Darlington JW, Wasan KM. Assessment
of cholesterol absorption inhibitors
nanostructured aluminosilicate and
dehydroxymethyl benzylamino phosphonate

7. Sunarsih ES, Djamila, Nilawati S.
Pengaruh infusa daun murbei (Morus
alba L.) terhadap penurunan kadar
fructan darah tikus putih jantan diabetes
karena pemberian aloksan. Trad Med J.
2007;12(40):1–6

8. Lenzen S. The mechanisms of alloxan-
and streptozotocin-induced diabetes.

9. Sunarsih ES, Djamila, Utomo RS. Pengaruh
pemberian infusa umbi gadung (Dioscorea
hispida Dennst) terhadap penurunan
cukupan darah tikus putih jantan

Althea Medical Journal. 2015;2(3)